SilverLight DLR Starter
This document walks you through a super simple Silverlight page with a button handler written in IPy and JS.
21
Introduction

2
Clean Machine Setup -- TBD Due to Issues
2
3
Installing SilverLight and DLR (works for Rowan)
2
4
IPy Sample
3
4.1
Parts List
3
4.2
End-to-End: What the Parts Do
3
4.2.1
Default.html
3
4.2.2
Scene.xaml
4
4.2.3
Code.py
4
4.3
Extending the Sample to Inject XAML on Click
5
5
JS Sample
5
5.1
Parts List
5
5.2
End-to-End: What the Parts Do
5
5.2.1
Hello.html
5
5.2.2
Hello.xaml
6
5.2.3
Hello.jsx
6
6
Other Samples
7
7
Tips and Tricks
7
7.1
Imports and References
7
7.2
Document and Window
7
7.3
Xaml Element Name Lookup
7
7.4
Beware Native Javascript Name Cases
8
7.5
Event Handler Hookup
8
7.6
Event Handling on Root Canvas
8
7.7
Debugging with Printf Style TextBlock Elements
8
7.8
This vs. Self
9
7.9
Implicit Default Values or Unbound == False
9
7.10
String + Int
9
7.11
Python Standard Module Usage
9
7.12
Reflector Searching
9
7.13
Duh: Curlies, Else If, Extra Closing Parens, New Keyword, …
10

1 Introduction
This document walks you though a first, very simple IPy sample SilverLight app. The purpose is to familiarize you enough that you know you have all the right bits, that SilverLight and the standard samples in C# work, and that you know how to put a simple app together from scratch.
2 Clean Machine Setup -- TBD Due to Issues
Need:

· .NET 2.0

· SilverLight

· [DLR for one more day, then part of SilverLight install, except Ruby and VB.]

· ??? .NET 3.0

· ??? ISSUE: two delayed signed DLLs (sn -Vr) -- what are they, which are needed

· ??? Microsoft.VisualBasic.dll rebuild for SilverLight has wrong version currently

· Get fixed from Jomes, but daily builds will fix soon

· Needs to be registered for ignoring verification of delay signed DLLs (sn -Vr).

3 Installing SilverLight and DLR (works for Rowan)
Get SilverLight, DLR, IPy, and JS from \\cpvsbuild\drops\release\sl_mix07_ctp\raw\204XX.01\setup\sfxs\x86ret\enu\silverlight\2mixwhere the XX is replaced by the day of the month.
Go to http://devdiv/sites/silverlight/Lists/Samples/AllItems.aspx and run a sample there by clicking on the link in the middle column. If these run, then SilverLight is working.

You can find DLR samples at \\ironpython\silverlight-samples\. Due to the daily changes to SilverLight, the samples may or may not work with the current build, but the getstarted samples should always work.
4 IPy Sample

This sample puts a Canvas on a page with text, and when you click the text, it changes the text. Then we grow the sample to inject more XAML onto the canvas when you click the text. This sample can be found at \\billchi2\public\silverlight-dlr\simple-ipy\.
Thanks to John Lam and John Messerly for much help in getting this running!
4.1 Parts List

Default.html -- the page to start with

Js folder -- contains a little js code with helper functions that start SilverLight

Scene.xaml -- the visual description and event handler declaration
Code.py -- the event handler
4.2 End-to-End: What the Parts Do

4.2.1 Default.html

This file loads the js/aghost.js file, which contains the helper functions that kick off the SilverLight stack. Then in its body it runs a piece of javascript that uses the wpfeHost helper function to load the scene.xaml file. All the javascript in aghost and this file runs in the native engine.
The contents:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3c.org/TR/1999/REC-html401-19991224/loose.dtd">

<!-- saved from url=(0014)about:internet -->

<!-- the saved comment must be at the top of the file, first or second element perhaps, to avoid

 security dialogs and page load issues. -->

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">

<head>

<title>Simple</title>

<script type="text/javascript" src="js/agHost.js"></script>

</head>

<body>

<div id="agControl1Host" >

<script type="text/javascript">

wpfeHost({ source: "Scene.xaml" });

</script>

</div>

</body>

</html>

The “<!DOCTYPE …” line does not seem to be critical.

The “<!-- saved from url …” line is required to squelch IE complaining about running active content. A line like this one gets added to html files you’ve browsed to if you save the html to your disk for invoking later.

The first “<script” element loads the aghost.js file mentioned.

The second “<script” element contains the call to the helper function with a dictionary of values to set on the SilverLight host. The helper function verifies the browser, crunches the xaml into html, and writes it to the document object.
4.2.2 Scene.xaml

This file defines a Canvas that holds a TextBlock. The TextBlock declares the OnClick function as the click handler for the text. We would not necessarily need the Canvas tag

The contents:

<Canvas

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

x:Name="Root"

Width="100" Height="100"

 Background="Black"

>

<x:Code Source="Code.py" Type="text/python" />

 <TextBlock x:Name="TextBlock1" Foreground="White" Text="Click Me" MouseLeftButtonDown="OnClick" />

</Canvas>

The first “xmlns” line declares the WPF/S element names.
The second “xmlns” line declares “x” as the prefix for including xaml element names (“x” is the common name used).

The “x:Name” property lets us refer to the canvas programmatically when we extend it to inject an element.

The “<x:Code” element loads our IPy code.

The “<TextBlock” element declares our text and event handler function name.

4.2.3 Code.py

This code simply defines the click handler function declared in the scene.xaml file, and all it does is change the Text property of the TextBlock.
The contents (the part we care about now):

def OnClick (sender, args):

 TextBlock1.Text = "Ouch!"

4.3 Extending the Sample to Inject XAML on Click

If you uncomment the rest of the Code.py file, and comment out the first OnClick function, you’ll have the following contents:
import clr

clr.AddReference('agclr')

clr.AddReference('System.Silverlight')

import System.Windows

def OnClick (sender, args):

 elt = System.Windows.Application.CreateFromXaml("""

 <TextBlock Foreground="White" Canvas.Top="50" Text='Ouch!'/>""")

 Root.Children.Add(elt)

This code imports and adds references to SilverLight code so that we can inject xaml to our Canvas. The OnClick function creates a WPF/S object from xaml in the CreateFromXaml function call. Then it adds this object as a child to our Root canvas object.
Here is where you could squirt in more xaml to create more cool effects and visuals like \\johnlam-vista\public\Flickr\Default.html shows.
5 JS Sample
This sample is very similar to the IPy sample with a few differences. It uses JS on the DLR. It shows using a Loaded event handler. It grows the TextBlock with each click rather than changing the text or inserting new elements.
Thanks to Nandan Prabhu, John Lam, and John Messerly for this sample!

5.1 Parts List

hello.html -- the page to start with

Js folder -- contains a little js code with helper functions that start SilverLight

hello.xaml -- the visual description and event handler declaration

hello.jsx -- the Load and OnClick event handlers
5.2 End-to-End: What the Parts Do
This sample is much like the IPy example, I’m skipping the excruciating details here. I can add them based on feedback.

5.2.1 Hello.html
<!-- saved from url=(0014)about:internet -->

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">

<head>

 <title>DLR Hello World </title>

 <script type="text/javascript" src="js/agHost.js"></script>

</head>

<body>

 <div id="Div1">

 <script type="text/javascript">

wpfeHost({ source: "hello.xaml" });

 </script>

 </div>

</body>

</html>

Remember the first line squelches IE yelling about active content.

5.2.2 Hello.xaml

<Canvas

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 x:Name="rootCanvas"

 Width="400"

 Height="400">

 <x:Code Source="hello.jsx" Type="text/jsx" />

 <TextBlock

 Loaded="OnLoad_js"

 MouseLeftButtonDown="OnClick_js"

 x:Name="text1"

 Width="400"

 TextWrapping="Wrap">This gets changed in the Loaded handler.</TextBlock>

</Canvas>

5.2.3 Hello.jsx

function OnLoad_js(sender, args) {

 text1.Text = "Click Me to Grow Me"

}

function OnClick_js(sender, args) {

 text1.FontSize = text1.FontSize * 1.1

}

6 Other Samples

Samples in C#: http://devdiv/sites/silverlight/Lists/Samples/AllItems.aspx
Samples in native javascript: \\jscratch\scratch\Top10\
Samples in IronPython, DLR JScript, and DLR Ruby: \\ironpython\silverlight-samples or checked into VSTS at $Merlin\main\hosts\silverlight\samples\

Some of the above and others in various languages: \\silverlightapps\
7 Tips and Tricks
This section contains general Silverlight tips and tricks in the MIX 07 timeframe, as well as native javascript conversion tips.
7.1 Imports and References

In general, you’ll need:

import clr

import System.Windows
You do NOT need to call clr.AddReference on “agclr” or “System.Silverlight”.
7.2 Document and Window

To get at the document, you can use this:

System.Windows.Browser.HtmlPage.Document
To translate window.onresize = resize, you can do this:

System.Windows.Interop.BrowserHost.Resize += resize

7.3 Xaml Element Name Lookup
In general named XAML elements show up as module members to IronPython code. For example, the native javascript:

root_canvas = gameControl.content.findName('Root')

in IronPython is simply:

Root
If your designer has used a name you want to use for a type or function in a module, you still can use the following:

Root.FindName(“MyXamlElement”)

You can translate this native javascript:

gameControl = document.getElementById("AgControl1");

to:

System.Windows.Browser.HtmlPage.Document.GetElementById(“AgControl1”)
7.4 Beware Native Javascript Name Cases

The native javascript engine massages member look up so that they can write camel casing while XAML is Pascal cased. When converting code, be careful to change casing on lines of code that are syntactically fine for copying into python or DLR Jscript.

True and False also have different casing between the languages.
7.5 Event Handler Hookup

Native javascript looks something like this:
var button = rootCanvas.findName("MyButton");

this.setCallback(button, "mouseEnter", this.handleMouseEnter);

The IronPython literal translation looks like this:
button = rootCanvas.FindName("MyButton")

button.MouseEnter += Input.MouseEventHandler(handleMouseEnter)

button.MouseLeave += Input.MouseEventHandler(handleMouseLeave)

Or, more simply:

MyButton.MouseEnter += handleMouseEnter
MyButton.MouseLeave += handleMouseLeave

Note, if your event handler is an instance member, then its parameters are self, sender, args. When IronPython fetches the method value, it creates a bound method (closes over self) so that the event handler stored in MyButton has the right signature.
7.6 Event Handling on Root Canvas

This does not work in SL W2 Alpha. For example, you must add an inner canvas or element, handle the Loaded event on it, and then fetch its parent to affect the root canvas.
7.7 Debugging with Printf Style TextBlock Elements

It can be very helpful to print to a text block for debugging, or even to catch exceptions and ToString the exception to a text block. You can add a line like this to your xaml:

 <TextBlock Foreground="Black" x:Name="StatusText" Text="XXX"/>
Or, you can add code like this in a Loaded event handler (making elt a global that’s available from all code):

elt = System.Windows.XamlReader.Load("""

 <TextBlock Foreground="Black" Canvas.Top="50" Width="500" Height="500" Text='XXX'/>""")

Root.Children.Add(elt)

elt.Text = "I'm in!"
Then you can use something like the following to wrap event handlers or code:

 try:

 …

 except System.Exception, e:
 StatusText.Text = "ERROR" #StatusText is named element in XAML
 elt.TextWrapping = System.Windows.TextWrapping.Wrap

 elt.Text = e.ToString()

7.8 This vs. Self
When converting javascript to python, need to change javascript “this” to “self”. We’ve seen some javascript code with “self”, but it seems you can just leave the “self” alone.

7.9 Implicit Default Values or Unbound == False

Native Javascript has manifest implicit default values that semantically false. You may hit bugs when converting code to python where you need to set a variable (defined in the right scope, object, etc.) to None so that first executions through code paths work correctly.

7.10 String + Int

When converting expressions like “foo” + 3 to python, you’ll need to wrap the int with str(), for example, “foo” + str(3).
7.11 Python Standard Module Usage

You cannot count on standard modules existing and being available for loading in Silverlight. However, built in modules can use the python trick of importing the name with a leading underscore (for example, “import _random”). This will get you at some utilities.
7.12 Reflector Searching

Using reflector can be a great asset to discovering members, or looking up tokens from native Javascript to find similarly named members in the XAML object model. You will want to set the option in Reflector to show inherited members in the browser pane. You also need to be careful that in the search pane there is a button for searching types only or members only. You may often think you have no search hits when you’re just searching the wrong domain.
7.13 Duh: Curlies, Else If, Extra Closing Parens, New Keyword, …
Don’t forget to vanquish all curlies (and semicolons) when converting code, fix “else if” to “elif”, add colons to statements (usually replacing curlies), etc.

Microsoft Confidential
Page 8 of 13
4/4/2007

